5.111 Lecture Summary #13

Readings for today: Section 3.8 – 3.11 Molecular Orbital Theory (Same in 5th and 4th ed.) **Read for Lecture #14:** Sections 3.4, 3.5, 3.6 and 3.7 – Valence Bond Theory (Same in 5th and 4th ed).

Topics: I. Molecular orbital theory

- **A.** Homonuclear molecules with MOs originating from s orbitals
- **B.** Homonuclear molecules with MOs originating from s and p orbitals
- C. Heteronuclear diatomic molecules

I. MOLECULAR ORBITAL (MO) THEORY

In MO theory, valence electrons are ______ over the entire molecule, not confined to individual atoms or bonds, as in Lewis and valence-bond models.

Molecular orbitals (_______) of diatomic molecules arise from adding together (superimposing) atomic orbitals.

A Linear Combination of Atomic Orbitals (LCAO) creates molecular orbitals (bonding orbitals and antibonding orbitals)

N molecular orbitals can be constructed by *N* atomic orbitals.

A. Homonuclear molecules with MOs originating from s orbitals

Bonding orbitals arise from LCAO under conditions of constructive interference

σ: designates a molecular orbital that is cylindrically symmetric about the bond axis (with no nodal plane along the bond axis).

 $\underline{\hspace{1cm}}$ + $\underline{\hspace{1cm}}$ = σ_{1s} = bonding molecular orbital (MO) and also a **wavefunction**.

When waves interfere <u>constructively</u>, the amplitude **increases** where they overlap.

Increased amplitude in the internuclear region translates to an **enhanced** probability density (ψ^2) between the nuclei.

© sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Any electron that occupies a bonding MO will be attracted to BOTH nuclei, and therefore will be ______ compared to an atomic orbital associated with a single nucleus.

Energy of interaction. The energy of a **bonding orbital** is _____ compared to the atomic orbitals!

For H₂, when its two electrons both occupy the bonding orbital, the molecule is _____stable.

Antibonding orbitals (result of **destructive** interference of two atomic orbitals)

 $\underline{}$ - $\underline{}$ = σ_{1s}^* = antibonding molecular orbital.

When wavefunctions interfere **destructively**, the amplitude **decreases** where they overlap.

© sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Decreased amplitude in the internuclear region translates to a **diminished** probability density (ψ^2) between the nuclei and a **node** between the two nuclei.

An electron in this **antibonding orbital** would be essentially excluded from the internuclear region, and thus have a ______ energy than if in an atomic orbital.

Energy of interaction. The energy of an **antibonding orbital** is______ compared to the atomic orbitals!

An antibonding orbital is raised in energy by approximately the same amount that the bonding orbital is lowered in energy.

N molecular orbitals can be constructed by N atomic orbitals. Thus, 2 atomic orbitals generate 2 molecular orbitals (one bonding and one antibonding, one lower in energy and one higher in energy).

MO diagram of H_2 : In the case of H_2 , both electrons are in the σ_{1s} orbital.

Electron configuration of H₂: _____

MO diagram of He₂:

Electron configuration of He₂: _____interest is _____interest in the energy for He₂ compared to 2 He.

MO theory predicts He₂ does not exist because no net gain in E.

BOND ORDER = $\frac{1}{2}$ (# of bonding electrons - # of antibonding electrons)

He₂: $(\sigma_{1s})^2(\sigma_{1s}^*)^2$

bond order = bond

 $H_2: (\sigma_{1s})^2$

bond order = _____ bond

Reality: He₂ does exist. 'Discovered' in 1993. Weakest chemical bond known.

 $\Delta E_d = 0.01 \text{ kJ/mol for He}_2$ $\Delta E_d = 432 \text{ kJ/mol for H}_2$

The MOs formed by LCAO for 2s orbitals are analogous to those formed by 1s.

 Li_2

Electron configuration: $(\sigma_{1s})^2(\sigma_{1s}^*)^2(\sigma_{2s})^2$

Bond order: $\frac{1}{2}$ () =

 $\Delta E_d =$ _____kJ/mol

1

Note: Bond order can be calculated by considering all electrons or only valence electrons.

 Be_2

 e^{-} configuration: $(\sigma_{1s})^2(\sigma_{1s}^*)^2(\sigma_{2s})^2(\sigma_{2s}^*)^2$

Bond order (counting all electrons): ½ () =

Bond order (counting only valence e⁻s): ½ () =

 $\Delta E_d = \underline{\hspace{1cm}} kJ/mol - very weak$

E

B. Homonuclear molecules with MOs originating from s and p orbitals

Bonding MOs formed by LCAO of $2p_x$ and $2p_y$ as a result of **constructive** interference

 π -orbital: Molecular wavefunction (molecular orbital) with a nodal plane through the _____ axis.

Antibonding MOs formed by LCAO of 2p_x and 2p_y as a result of destructive interference

 π^* -orbitals: Molecular wavefunction (molecular orbital) with TWO nodal planes. One nodal plane is through the bonding axis and the other is between nuclei.

Please note that MO diagrams for B_2 and C_2 below are incomplete since they do not include the $2p_z$ molecular orbitals!

Just considering 2s, 2p_x, and 2p_y for the moment, let's sum it up:

Two 2s AOs generate **two** σ_{2s} MOs (lower energy σ_{2s} & higher energy σ_{2s} *).

Two $2p_x$ AOs generate **two** π_{2px} MOs (lower energy π_{2px} & higher energy π_{2px}^*). **Two** $2p_y$ AOs generate **two** π_{2py} MOs (lower energy π_{2py} & higher energy π_{2py}^*)

The stability of the resulting molecule depends on the # electrons that occupy lower energy orbitals compared to the # that occupy higher energy orbitals.

If the net result of molecule formation is that more electrons have a lower energy, then the molecule is _____.

If the energy differential is small, then the molecule is not as stable.

For B₂:
$$(\sigma_{2s})^2(\sigma_{2s}^*)^2\pi_{2px}\pi_{2py}^*$$

_e in lower energy (bonding orbital)

_e in higher E (antibonding orbital)

Bond order = $\frac{1}{2}(4-2) = 1$

For C₂: $(\sigma_{2s})^2(\sigma_{2s}^*)^2(\pi_{2px}^*)^2(\pi_{2py}^*)^2$

_e in lower energy (bonding orbital)

Bond order = $\frac{1}{2}(4-2) = 1$

Bond order = $\frac{1}{2}(6-2) = 2$

$$\Delta E_d = \underline{\qquad}$$

$$\Delta E_d = \underline{\qquad}$$

Please note that complete MO diagrams for B_2 and C_2 must include the $2p_Z$ molecular orbitals even if no electrons are in those orbitals.

Bonding MOs formed by LCAO of 2p,

σ: cylindrically symmetric with no nodal plane about the bond axis

$$2p_{za} + 2p_{zb} = \underline{\hspace{1cm}}$$

Nodes pass through nuclei, but no nodes along the bond axis.

Constructive interference results in a region of **increased** amplitude between nuclei, and thus an **increased** probability density between nuclei (therefore **lower** energy MO)

Antibonding MOs formed by LCAO of 2pz

σ: cylindrically symmetric with no nodal plane about the bond axis

Nodes pass through and between the nuclei, but no nodes along the bond axis.

Destructive interference results in **a nodal plane between the nuclei**, and **decreased** probability density between nuclei (therefore **higher** energy MO)

The relative energies of the σ_{2pz} orbital compared to the π_{2px} and π_{2py} orbitals depend on the_____ value of the atoms.

For simple **homonuclear** diatomic molecules:

- The relative E ordering is (π_{2px}) and $(\pi_{2py}) < (\sigma_{2pz})$ if $Z < \underline{\hspace{1cm}}$.
- The relative E ordering is $(\sigma_{2pz}) < (\pi_{2px})$ and (π_{2py}) if $Z = or > _____.$
- The relative E ordering of antibonding orbitals doesn't change with Z.

MO theory does a better job describing the properties of O_2 than Lewis Structures do. Both MO theory and Lewis Structures do a good job with N_2 .

<u>Note:</u> Molecules possessing **unpaired** electrons are <u>paramagnetic</u> (attracted by magnetic field); those in which the electrons are paired are <u>diamagnetic</u> (repelled by magnetic field).

C. For HETERONUCLEAR diatomic molecules:

- The relative E ordering is (π_{2px}) and $(\pi_{2py}) < (\sigma_{2pz})$ if Z < 8 for both atoms.
- You are NOT responsible for predicting the energy level ordering if either one of the atoms has Z = or > 8.

For full credit on MO diagrams,

electrons (paramagnetic)

- ➤ label increasing energy with an arrow next to the diagram.
- > pay attention to whether the question asks for *valence* electrons or *all* electrons.
- ➤ for any bonding orbital drawn, include the corresponding anti-bonding orbital, even if it is not filled with any electrons.
- ▶ label each atomic orbital (1s, 2s, 2px, 2py, etc.) and each molecular orbital ($\int 2s$, $\pi 2px$, $\pi 2py$, etc.) that you draw.
- ▶ fill in the electrons for both the atomic and molecular orbitals.

5.111 Principles of Chemical Science Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.